The role of ezrin-associated protein network in human sperm capacitation.

نویسندگان

  • Lei Wang
  • Wen Chen
  • Chun Zhao
  • Ran Huo
  • Xue-Jiang Guo
  • Min Lin
  • Xiao-Yan Huang
  • Yun-Dong Mao
  • Zuo-Min Zhou
  • Jia-Hao Sha
چکیده

Membrane modifications in sperm cells represent a key step in sperm capacitation; however, the molecular basis of these modifications is not fully understood. Ezrin is the best-studied member of the ezrin/radixin/merlin family. As a cross-linker between the cortical cytoskeleton and plasma membrane proteins, ezrin contributes to remodeling of the membrane surface structure. Furthermore, activated ezrin and the Rho dissociation inhibitor, RhoGDI, promote the formation of cortical cytoskeleton-polymerized actin through Rho activation. Thus, ezrin, actin, RhoGDI, Rho and plasma membrane proteins form a complicated network in vivo, which contributes to the assembly of the structure of the membrane surface. Previously, we showed that ezrin and RhoGDI1 are expressed in human testes. Thus, we sought to determine whether the ezrin-RhoGDI1-actin-membrane protein network has a role in human sperm capacitation. Our results by Western blot indicate that ezrin is activated by phosphorylation of the threonine567 residue during capacitation. Co-immunoprecipitation studies revealed that, during sperm capacitation, the interaction between ezrin and RhoGDI1 increases, and phosphostaining of two dimensional electrophoresis gels showed that RhoGDI1 is phosphorylated, suggesting that RhoGDI1 dissociates from RhoA and leads to actin polymerization on the sperm head. We speculate that activated ezrin interacts with polymerized actin and the glycosylated membrane protein cd44 after capacitation. Blocking sperm capacitation using ezrin- or actin-specific monoclonal antibodies decreases their acrosome reaction (AR) rate, but has no effect on the AR alone. Taken together, our results show that a network consisting of ezrin, RhoGDI1, RhoA, F-actin and membrane proteins functions to influence the modifications that occur on the membrane of the sperm head during human sperm capacitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis

Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...

متن کامل

P-57: Evaluation of HSPA2 in Fertile and Infertile Individuals

Background: Heat-shock protein A2 (HspA2) is a testisspecific member of the HSP70 family known to play a critical role in spermatogenic cell differentiation. HspA2 is correlated with sperm maturity, function and fertility, and diminished expression of HspA2 results in abnormal sperm maturity and infertility. The aim of this study was to compare expression of HspA2 in fertile and infertile indiv...

متن کامل

P-56: Effect of Cissampelos Capensis Rhizome Extract on Human Sperm Capacitation and Acrosome Reaction

s:2086:"Background: Cissampelos capensis, is commonly known by the Afrikaans name "dawidjies" and is the most important and best known medicinal plant of the family Menispermaceae used by the Khoisan and other rural people in the western regions of South Africa. Among numerous other ailments, it is taken to treat male fertility problems. The aim of this study was to investigate the effects of C...

متن کامل

Analysis of chaperone proteins associated with human spermatozoa during capacitation.

Mammalian spermatozoa must undergo a post-ejaculatory period of maturation, known as capacitation, before they can engage in the process of fertilization. Studies in the mouse have established that capacitation facilitates sperm-zona recognition via mechanisms that involve the appearance of tyrosine phosphorylated chaperone proteins on the sperm surface overlying the acrosome, the site of sperm...

متن کامل

Reactive Oxygen Species and Antioxidant in Seminal Plasma and Their Impact on Male Fertility

Spermatozoa generate reactive oxygen species (ROS) in physiological amounts which play a role in sperm functions during sperm capacitation acrosome reaction (AR) and oocyte fusion. In addition damaged sperm are likely to be the source of ROS. The most important ROS produced by human sperm are hydrogen peroxide superoxide anion and hydroxyl radicals. Besides human seminal plasma and sperm posses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asian journal of andrology

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2010